Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Neuroanat ; 128: 102209, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496001

RESUMO

Despite progress in understanding the role of the dorsal hippocampus in the acquisition, consolidation and retrieval of episodic-like memory, plastic changes within the intra- and extrahippocampal circuits for aversive memory formation and anxiety-like behaviours must still be identified since both processes contribute to multiple aspects of flexible decision-making. Here, we investigated the effect of reversible inactivation induced by a muscimol microinfusion into the dorsal CA1 subfield (dCA1) either prior to acquisition or to retrieval testing of a discriminative avoidance task performed in a plus-maze apparatus (PM-DAT). Differential cAMP-response-element-binding protein 1 (CREB-1) expression in the dorsal and ventral CA1 and CA3 of the hippocampus (dCA1, dCA3, vCA1, and vCA3), dorsal dentate gyrus (dDG), and infralimbic (IL) and prelimbic (PrL) regions of the medial prefrontal cortex was also assessed to investigate the molecular changes associated with the consolidation or retrieval of episodic-like memory and anxiety. Adult male Wistar rats were assigned to two control groups, learning (no surgery/no microinfusion, n = 7) and sham-operated (sham surgery/no microinfusion, n = 6) groups, or four experimental groups, in which the vehicle (0.5 µl per side, n = 8/per group) or a GABAA receptor agonist (0.5 µg/0.5 µl muscimol/per side) was bilaterally microinfused in the dCA1 30 min prior to training (n = 9) or prior to testing sessions (n = 6) with a 24 h intertrial interval. Memory was evaluated using the percentage of time spent in the nonaversive enclosed arms, whereas anxiety was measured by calculating the percentages of time spent and entries into open arms and the percentage of time spent self-grooming. Our findings corroborated previous data showing that the dCA1 is required for discriminative avoidance consolidation. Furthermore, additional information indicated that impaired long-term memory was associated with downregulated CREB-1 expression in the dDG and vCA3. Moreover, memory retrieval was not impaired by dCA1 inactivation prior to the testing session, which was associated with the upregulation of CREB-1 in the dCA3 and vCA1 and downregulation in the dCA1 and vCA3. Differential expression of CREB was not identified in the IL or PrL areas. These results improve our understanding of how the hippocampal circuitry mediates the acquisition and retrieval of aversive memory and anxiety.


Assuntos
Hipocampo , Memória , Ratos , Animais , Masculino , Ratos Wistar , Muscimol/farmacologia , Aprendizagem
2.
Brain Sci ; 11(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942904

RESUMO

Previous studies have shown that Ginkgo biloba extract (GbE) reduces food intake and body mass gain and regulates proteins related to lipid metabolism in obese rats. In ovariectomized rats, GbE restored the hippocampal and hypothalamic serotonergic system activity, favoring the spontaneous feeding decrement. Considering the promising hypophagic effect of GbE, this study aimed to investigate the effect of a single acute dose on hypothalamic pathways that regulate feeding behavior in male rats. Four-month-old Wistar male rats received either a single acute oral GbE dose (500 mg/kg) or vehicle. Food intake and body mass were measured after 1, 4, 12, and 24 h. Rats were euthanized, and hypothalami were removed for mRNA quantification of anorexigenic (POMC/CART) and orexigenic (AgRP/NPY) neuropeptides, leptin/serotonin receptors (5HT1A, 5HT1B, 5HT2C), and serotonin transporters. We also investigated POMC, 5-HT1B, and 5-HT2C protein levels. A single acute GbE dose induced the hypothalamic POMC, CART, and 5-HT2C gene expression but failed to modify orexigenic effectors. No alterations in food intake, body mass, and hypothalamic protein levels were observed. In summary, the present findings demonstrate the rapid stimulation of pivotal hypothalamic anorexigenic pathways in response to a single GbE administration, reinforcing the GbE hypophagic activity. However, more studies are necessary to evaluate its potential as an appetite modulator.

3.
Molecules ; 26(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206011

RESUMO

Despite considerable progress on the study of the effect of standardized extract of Gingko biloba (EGb) on memory processes, our understanding of its role in the persistence of long-term memory (LTM) and the molecular mechanism underlying its effect, particularly episodic-like memory, is limited. We here investigated the effects of EGb on the long-term retention of recognition memory and its persistence and BDNF expression levels in the dorsal hippocampal formation (DHF). Adult male Wistar rats (n = 10/group) were handled for 10 min/5 day. On day 6, the animals were treated with vehicle or 0.4 mg/kg diazepam (control groups) or with EGb (250, 500 or 100 mg/kg) 30 min before the training session (TR1), in which the animals were exposed to two sample objects. On day 7, all rats underwent a second training session (TR2) as described in the TR1 but without drug treatment. Object recognition memory (ORM) was evaluated on day 8 (retention test, T1) and day 9 (persistence test, T2). At the end of T1or T2, animals were decapitated, and DHF samples were frozen at -80 °C for analyses of the differential expression of BDNF by Western blotting. EGb-treated groups spent more time exploring the novel object in T2 and showed the highest recognition index (RI) values during the T1 and T2, which was associated with upregulation of BDNF expression in the DHF in a dose-and session-dependent manner. Our data reveal, for the first time, that EGb treatment before acquisition of ORM promotes persistence of LTM by BDNF differential expression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Extratos Vegetais/administração & dosagem , Reconhecimento Psicológico/efeitos dos fármacos , Regulação para Cima , Animais , Relação Dose-Resposta a Droga , Ginkgo biloba , Hipocampo/metabolismo , Masculino , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
4.
Physiol Behav ; 209: 112534, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071338

RESUMO

To improve our understanding of the effects of standardized extract of Ginkgo biloba (EGb) as a cognitive enhancer, we investigated the conditioned lick suppression-induced expression (mRNA and protein) of the GluN2B-containing N-methyl-D-aspartic acid receptor (GluN2B-NMDAR), serotonin (5-HT) 1A receptor (5-HT1AR), gamma-aminobutyric acid type A receptor (GABAAR) and glial fibrillary acidic protein (GFAP) in the dorsal hippocampal formation (dHF) of untreated and EGb-treated (0.25, 0.5 and 1.0 g.kg-1) groups of rats. To substantiate our data, we analysed the molecular changes in dHF following treatment with vehicle, with agonists or antagonists of GABAAR, GluN2B-NMDAR and 5-HT1AR or with one of these antagonists prior to EGb and fear memory acquisition. Additionally, we performed a pharmacological analysis of the drug-receptor-receptor interactions and their supplemental role in fear memory by blocking individual receptors and analysed the possible changes in expression level with each of the other receptors in the study as well as astrocytes. Our data show for the first time that EGb treatment not only upregulated GluN2B, GABAAR-α5, and GFAP compared with the control but also differentially upregulated GABAAR-α1 in the dHF and 5HT1AR in the CA3. We found that the activation of GABAARs (diazepam) and the inactivation of GluN2B-NMDARs (Ro25-6981) or 5-HT1AR ((S)-WAY100135) resulted in memory impairment. Further, higher doses of EGb treatment reversed the effect of blocking GluN2B (P < 0.001) and 5-HT1AR (P < 0.001). Here, treatment with Ro25-6981 + EGb or (S)-WAY100135 + EGb prevented the impairment of the acquisition of lick suppression in association with the upregulation or prevention of the downregulation of Grin2b expression as well as the expression of GluN2B-NMDA and/or α1 and α5 subunit-containing GABAAR in the CA1 (P < 0.0001). Our data are in line with previous findings concerning the necessity of GluN2B for fear memory formation and add to the current knowledge of the role of the GABAAR-α1 and -α5 subunits and of GluN2B as a target of cognitive enhancers. Furthermore, our data show that these receptors play a complementary role in controlling the neural circuitry in the dHF that seems to be essential to conditioned lick suppression and the modulatory effects of EGb.


Assuntos
Condicionamento Operante/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/metabolismo , Diazepam/farmacologia , Moduladores GABAérgicos/farmacologia , Ginkgo biloba , Masculino , Memória/efeitos dos fármacos , Fenóis/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Ratos , Ratos Wistar
5.
Front Pharmacol ; 8: 605, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928661

RESUMO

Menopause is associated with increased risk to develop obesity but the mechanisms involved are not fully understood. We have shown that Ginkgo biloba extract (GbE) improved diet-induced obesity. Since GbE might be effective in the treatment of obesity related to menopause, avoiding the side effects of hormone replacement therapy, we investigated the effect of GbE on hypothalamic systems controlling energy homeostasis. Wistar rats were either ovariectomized (OVX) or Sham-operated. After 2 months, either 500 mg.kg-1 of GbE or vehicle were administered daily by gavage for 14 days. A subset of animals received an intracerebroventricular (i.c.v.) injection of serotonin (300 µg) or vehicle and food intake was measured after 12 and 24 h. Another subset was submitted to in vivo microdialysis and 5-HT levels of the medial hypothalamus were measured by high performance liquid chromatography, before and up to 2 h after the administration of 500 mg.kg-1 of GbE. Additional animals were used for quantification of 5-HT1A, 5-HT1B, 5-HT2C, 5-HTT, and pro-opiomelanocortin hypothalamic protein levels by Western blotting. OVX increased food intake and body weight and adiposity while GbE attenuated these alterations. i.c.v. serotonin significantly reduced food intake in Sham, Sham + GbE, and OVX + GbE groups while it failed to do so in the OVX group. In the OVX rats, GbE stimulated 5-HT microdialysate levels while it reduced hypothalamic 5-HTT protein levels. The results indicate that GbE improved the ovariectomy-induced resistance to serotonin hypophagia, at least in part through stimulation of the hypothalamic serotonergic activity. Since body weight gain is one of the most important consequences of menopause, the stimulation of the serotonergic transmission by GbE may represent a potential alternative therapy for menopause-related obesity.

6.
Behav Brain Res ; 313: 144-150, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27424157

RESUMO

This study assessed the effects of chronic treatment with a standardized extract of Ginkgo biloba L. (EGb) on short-term and long-term memory as well as on anxiety-like and locomotor activity using the plus-maze discriminative avoidance task (PM-DAT). Additionally, we evaluated the antioxidant and neuroprotective effects of EGb on the prefrontal cortex (PFC) and dorsal hippocampus (DH) of middle-aged rats using the comet assay. Twelve-month-old male Wistar rats were administered vehicle or EGb (0.5mgkg(-1) or 1.0gkg(-1)) for 30days. Behavioural data showed that EGb treatment improved short-term memory. Neither an anti-anxiety effect nor a change in locomotor activity was observed. Twenty-four hours after the behavioural tests, the rats were decapitated, and the PFC and DH were quickly dissected out and prepared for the comet assay. The levels of DNA damage in the PFC were significantly lower in rats that were treated with 1.0gkg(-1) EGb. Both doses of EGb decreased H2O2-induced DNA breakage in cortical cells, whereas the levels of DNA damage in the EGb-treated animals were significantly lower than those in the control animals. No significant differences in the level of DNA damage in hippocampal cells were observed among the experimental groups. EGb treatment was not able to reduce H2O2-induced DNA damage in hippocampal cells. Altogether, our data provide the first demonstration that chronic EGb treatment improved the short-term memory of middle-aged rats, an effect that could be associated with a reduction in free radical production in the PFC. These data suggest that EGb treatment might increase the survival of cortical neurons and corroborate and extend the view that EGb has protective and therapeutic properties.


Assuntos
Antioxidantes/administração & dosagem , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Extratos Vegetais/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Ansiedade , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Ginkgo biloba , Hipocampo/metabolismo , Masculino , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Wistar
7.
Front Behav Neurosci ; 9: 345, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26778988

RESUMO

The effects of flavonoids have been correlated with their ability to modulate the glutamatergic, serotoninergic, and GABAergic neurotransmission; the major targets of these substances are N-methyl-D-aspartic acid receptor (NMDARs), serotonin type1A receptor (5-HT1ARs), and the gamma-aminobutyric acid type A receptors (GABAARs). Several studies showed that these receptors are involved in the acquisition and extinction of fear memory. This study assessed the effects of treatment prior to conditioning with a flavonoid-rich fraction from the stem bark of Erythrina falcata (FfB) on the acquisition and extinction of the conditioned suppression following pharmacological manipulations and on gene expression in the dorsal hippocampus (DH). Adult male Wistar rats were treated before conditioned fear with FfB, vehicle, an agonist or antagonist of the 5-HT1AR, GABAARs or the GluN2B-NMDAR or one of these antagonists before FfB treatment. The effects of these treatments on fear memory retrieval, extinction training and extinction retrieval were evaluated at 48, 72, and 98 h after conditioning, respectively. We found that activation of GABAARs and inactivation of GluN2B-NMDARs play important roles in the acquisition of lick response suppression. FfB reversed the effect of blocking GluN2B-NMDARs on the conditioned fear and induced the spontaneous recovery. Blocking the 5-HT1AR and the GluN2B-NMDAR before FfB treatment seemed to be associated with weakening of the spontaneous recovery. Expression of analysis of DH samples via qPCR showed that FfB treatment resulted in the overexpression of Htr1a, Grin2a, Gabra5, and Erk2 after the retention test and of Htr1a and Erk2 after the extinction retention test. Moreover, blocking the 5-HT1ARs and the GluN2B-NMDARs before FfB treatment resulted in reduced Htr1a and Grin2b expression after the retention test, but played a distinct role in Grin2a and Erk2 expression, according session evaluated. We show for the first time that the serotoninergic and glutamatergic receptors are important targets for the effect of FfB on the conditioned fear and spontaneous recovery, in which the ERK signaling pathway appears to be modulated. Further, these results provide important information regarding the role of the DH in conditioned suppression. Taken together, our data suggest that FfB represents a potential therapy for preventing or treating memory impairments.

8.
BMC Complement Altern Med ; 14: 288, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25096710

RESUMO

BACKGROUND: Flavonoids, which have been identified in a variety of plants, have been demonstrated to elicit beneficial effects on memory. Some studies have reported that flavonoids derived from Erythrina plants can provide such beneficial effects on memory. The aim of this study was to identify the flavonoids present in the stem bark crude extract of Erythrina falcata (CE) and to perform a bioactivity-guided study on conditioned fear memory. METHODS: The secondary metabolites of CE were identified by high performance liquid chromatography combined with a diode array detector, electrospray ionization tandem mass spectrometry (HPLC-DAD-ESI/MSn) and nuclear magnetic resonance (NMR). The buthanolic fraction (BuF) was obtained by partitioning. Subfractions from BuF (BuF1 - BuF6) and fraction flavonoidic (FfA and FfB) were obtained by flash chromatography. The BuF3 and BuF4 fractions were used for the isolation of flavonoids, which was performed using HPLC-PAD. The isolated substances were quantified by HPLC-DAD and their structures were confirmed by nuclear magnetic resonance (NMR). The activities of CE and the subfractions were monitored using a one-trial, step-down inhibitory avoidance (IA) task to identify the effects of these substances on the acquisition and extinction of conditioned fear in rats. RESULTS: Six subclasses of flavonoids were identified for the first time in CE. According to our behavioral data, CE, BuF, BuF3 and BuF4, the flavonoidic fractions, vitexin, isovitexin and 6-C-glycoside-diosmetin improved the acquisition of fear memory. Rats treated with BuF, BuF3 and BuF4 were particularly resistant to extinction. Nevertheless, rats treated with FfA and FfB, vitexin, isovitexin and 6-C-glycoside-diosmetin exhibited gradual reduction in conditioned fear response during the extinction retest session, which was measured at 48 to 480 h after conditioning. CONCLUSIONS: Our results demonstrate that vitexin, isovitexin and diosmetin-6-C-glucoside and flavonoidic fractions resulted in a significant retention of fear memory but did not prevent the extinction of fear memory. These results further substantiate that the treatment with pure flavonoids or flavanoid-rich fractions might represent potential therapeutic approaches for the treatment of neurocognitive disorders, improvement of memory acquisition and spontaneous recovery of fear.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Erythrina/química , Flavonas/administração & dosagem , Extratos Vegetais/administração & dosagem , Animais , Cromatografia Líquida de Alta Pressão , Disfunção Cognitiva/psicologia , Medo/efeitos dos fármacos , Flavonas/química , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Memória/efeitos dos fármacos , Casca de Planta/química , Extratos Vegetais/química , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização por Electrospray
9.
Brain Res ; 1269: 68-89, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19146837

RESUMO

Although it has been suggested that the standardized Ginkgo biloba leaf extract (Egb 761) may have a beneficial effect on memory, the cellular and molecular changes that underlie this process are not yet well defined. The present study evaluated the effects of acute (one dose) or subacute treatments (one daily dose/seven days) with EGb 761 (0.5 g kg(-1) and 1.0 g kg(-1)) on rats submitted to a conditioned emotional response (CER) in comparison with positive (4 mg kg(-1) Diazepam) and negative (12%Tween 80) control groups. To this end, eighty (n=10/group) adult, male, Wistar rats (+/-250-300 g) were used in an off-baseline CER procedure. We here observed that the rats submitted to an acute and subacute EGb 761 treatments had acquisition of fear conditioning. Additionally, we investigate if the expression of genes previously associated with classical conditioning (CREB-1 and GAP-43) and new candidate genes (GFAP) are modulated following EGb 761 acute treatment. CREB-1, GAP-43 and GFAP mRNA and protein expressions were evaluated using both quantitative PCR (qPCR) and immunohistochemical analysis, respectively. We here show, for the first time, that EGb 761 modulated GAP-43, CREB-1 and GFAP expression in the prefrontal cortex, amygdala and hippocampus. We observed an underexpression of GAP-43 in all structures evaluated and over-expression of GFAP in the amygdala and hippocampus following acute G. biloba treatment when compared to control group (Tween; p<0.01). GAP-43 expression was decreased in prefrontal cortex and hippocampus in the subacute treatment with EGb 761. Subacute treatment with EGb 761 lead to a decreased CREB-1 in mPFC (p<0.001) and increased in the hippocampus to 1.0 g kg(-1)G. biloba group (p<0.001). The results obtained from immunohistochemical analysis support our aforementioned findings and revealed that the changes in expression occurred within specific regions in the areas evaluated. All together, our findings not only provide new evidence for a role of EGb 761 on memory but also identify molecular changes that underlie the fear memory consolidation.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Ginkgo biloba , Memória/efeitos dos fármacos , Extratos Vegetais/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Encéfalo/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Medo , Proteína GAP-43/genética , Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Wistar
10.
Mutagenesis ; 23(4): 261-5, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18308716

RESUMO

Yerba mate (Ilex paraguariensis) is rich in several bioactive compounds that can act as free radical scavengers. Since oxidative DNA damage is involved in various pathological states such as cancer, the aim of this study was to evaluate the antioxidant activity of mate tea as well as the ability to influence DNA repair in male Swiss mice. Forty animals were randomly assigned to four groups. The animals received three different doses of mate tea aqueous extract, 0.5, 1.0 or 2.0 g/kg, for 60 days. After intervention, the liver, kidney and bladder cells were isolated and the DNA damage induced by H(2)O(2) was investigated by the comet assay. The DNA repair process was also investigated for its potential to protect the cells from damage by the same methodology. The data presented here show that mate tea is not genotoxic in liver, kidney and bladder cells. The regular ingestion of mate tea increased the resistance of DNA to H(2)O(2)-induced DNA strand breaks and improved the DNA repair after H(2)O(2) challenge in liver cells, irrespective of the dose ingested. These results suggest that mate tea could protect against DNA damage and enhance the DNA repair activity. Protection may be afforded by the antioxidant activity of the mate tea's bioactive compounds.


Assuntos
Citoproteção/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Ilex paraguariensis , Extratos Vegetais/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ilex paraguariensis/química , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...